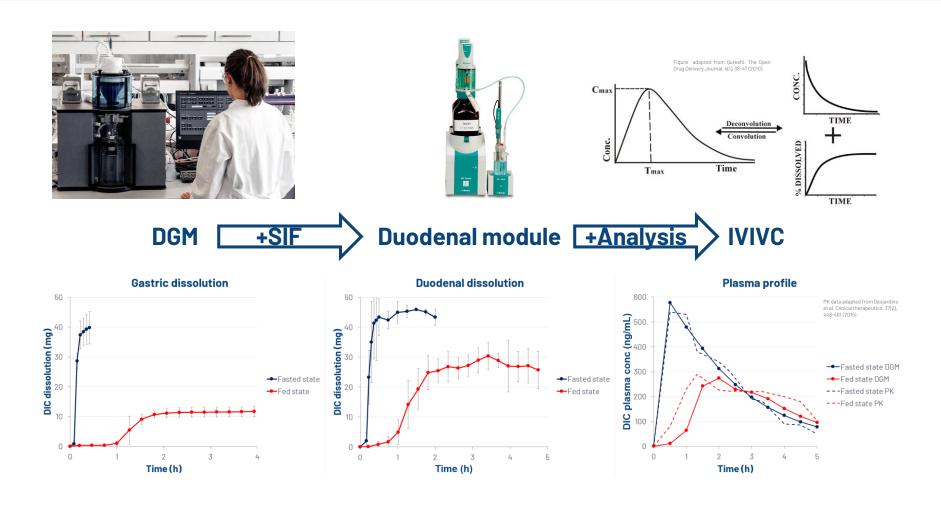
Predicting food effects of Cataflam[®] using the Dynamic Gastric Model (DGM)

Matthias M. Knopp^{1*}; Laila T. Hansen¹; Nikolai K. Kiil-Nielsen¹; Anette Müllertz^{1,2}

¹ Bioneer:FARMA, Department of Pharmacy, Universitetsparken 2, 2100, Denmark


² University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100, Denmark

FASTED STATE EXPERIMENTS

- One Cataflam[®] tablet (50 mg diclofenac potassium) added to the DGM along with 240 mL tap water
- 29 min processing time with dynamic addition of gastric acid and enzymes
- Samples of ~40 mL ejected from the DGM every 4 min
- DGM sample transferred to a duodenal module along with concentrated FaSSIF pH 6.5
- Aliquots of 1 mL taken from DGM/duodenal samples and analyzed (HPLC-UV) for dissolved drug content

FED STATE EXPERIMENTS

- High-fat FDA meal added to the DGM and after 30 min; one Cataflam[®] tablet along with 240 mL tap water
- 257 min processing time with dynamic addition of gastric acid and enzymes
- Samples of ${\sim}70~mL$ ejected from the DGM every 16 min
- DGM sample transferred to a duodenal module along with concentrated FeSSIF pH 5.8
- Aliquots of 1 mL taken from DGM/duodenal samples and analyzed (HPLC-UV) for dissolved drug content

DATA ANALYSIS

- Simple convolution of duodenal dissolution data
- Diclofenac potassium PK parameters:
 - Oral bioavailability 100%
 - Plasma half-life (T_{1/2}) 60 min
 - Volume of distribution (V_d) 75 L (\sim 1 L/kg)
 - Moore. Clinical drug investigation, 27(3), 163-195 (2007)

RESULTS & CONCLUSIONS

- The negative food effect observed for diclofenac potassium observed *in vivo* was also reflected *in vitro*
- The convoluted duodenal dissolution data was predictive of PK parameters C_{\max} , T_{\max} and AUC.
- The DGM-duodenal module can be used to study(food) effect of oral drug products with good predictability